On the Codimension Growth of G-graded Algebras
نویسنده
چکیده
Let W be an associative PI affine algebra over a field F of characteristic zero. Suppose W is G-graded where G is a finite group. Let exp(W ) and exp(We) denote the codimension growth of W and of the identity component We, respectively. We prove: exp(W ) ≤ |G| exp(We). This inequality had been conjectured by Bahturin and Zaicev.
منابع مشابه
APPROXIMATE IDENTITY IN CLOSED CODIMENSION ONE IDEALS OF SEMIGROUP ALGEBRAS
Let S be a locally compact topological foundation semigroup with identity and Ma(S) be its semigroup algebra. In this paper, we give necessary and sufficient conditions to have abounded approximate identity in closed codimension one ideals of the semigroup algebra $M_a(S)$ of a locally compact topological foundationsemigroup with identity.
متن کاملAn Improved Multiplicity Conjecture for Codimension Three Gorenstein Algebras
The Multiplicity Conjecture is a deep problem relating the multiplicity (or degree) of a Cohen-Macaulay standard graded algebra with certain extremal graded Betti numbers in its minimal free resolution. In the case of level algebras of codimension three, Zanello has proposed a stronger conjecture. We prove this conjecture for the case of codimension three graded Gorenstein algebras.
متن کاملCodimension, Multiplicity and Integral Extensions
Let A ⊂ B be a homogeneous inclusion of standard graded algebras with A0 = B0. To relate properties of A and B we intermediate with another algebra, the associated graded ring G = grA1B(B). We give criteria as to when the extension A ⊂ B is integral or birational in terms of the codimension of certain modules associated to G. We also introduce a series of multiplicities associated to the extens...
متن کامل. R A ] 2 2 N ov 2 00 4 BRANCH RINGS , THINNED RINGS , TREE ENVELOPING RINGS
We develop the theory of “branch algebras”, which are infinitedimensional associative algebras that are isomorphic, up to taking subrings of finite codimension, to a matrix ring over themselves. The main examples come from groups acting on trees. In particular, for every field k we construct a k-algebra K which • is finitely generated and infinite-dimensional, but has only finite-dimensional qu...
متن کاملGeneric Initial Ideals and Graded Artinian Level Algebras Not Having the Weak-lefschetz Property
We find a sufficient condition that H is not level based on a reduction number. In particular, we prove that a graded Artinian algebra of codimension 3 with Hilbert function H = (h0, h1, . . . , hd−1 > hd = hd+1) cannot be level if hd ≤ 2d + 3, and that there exists a level Osequence of codimension 3 of type H for hd ≥ 2d+k for k ≥ 4. Furthermore, we show that H is not level if β1,d+2(I ) = β2,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009